regulations

Human Biospecimens: Ethics and Regulations

Overview of Human Biospecimens

The human body and its collection of tissues have been studied since the ancient Greek times. After the Roman Empire fell, anatomical studies slowed down considerably as the use of cadavers became illegal in many places. Researchers were prosecuted for many years if they performed postmortem dissections. In the 15th century, medical schools in Europe allowed their researchers to study the human body and tissues without prosecution. Since then, the study of the human body has advanced significantly. Today, human biospecimens and tissue samples are vital for genetic research. Human biospecimens can be collected from several different sources:

  • Prospective tissue collection

  • Excess tissue obtained from clinical samples

  • Specimens from cadavers

  • Tissues with reproductive potential

With the increasing use of human biospecimens in research and clinical trials, issues regarding the ethics and regulations of these specimens needs to continuously be observed.

Governing Treaties, Laws, and Regulations

It is important to understand laws and regulations concerning human biospecimens as it helps researchers with issues of biospecimen ownership and ethical principles about human experimentation. One of the first important efforts of the medical community to regulate this kind of research is the Declaration of Helsinki. While it is not an international legally binding instrument, it has significantly influenced many regulations and national legislations.

Originally adopted in 1964, it has gone through six revisions. In the United States, the Code of Federal Regulations established by the government addresses the protection of the donors. In the Code of Federal regulations is the Common Rule that details the function and role of institutional review boards (IRBs) in the protection of human participants during the research activities. It also outlines the requirements in obtaining informed consent and additional protection for vulnerable groups such as pregnant mothers, neonates, fetuses, children, and prisoners. Some states also have their own laws that govern research using human participants.

Informed Consent

For informed consent, researchers must provide an explanation to potential participants regarding the purposes of the research and expected duration of the study. It should be noted that the descriptions provided should not be general and must be specific to the study. Without being adequately informed about the intended purpose of the research, participants cannot give “informed” consent the key element in the consent process is transparency. Participants should also know all the intended uses of the specimens. If their specimen is required in future research, additional informed consent should be obtained from the donors. However, the IRB can waive the need for informed consent for the use in a secondary project. IRB waiver is more likely if the donor has consented to future research at the time of tissue collection.

The participant also has to be informed regarding the potential risks, benefits, alternatives to participation, and what may be required of them during the study. Additional information required includes compensation and medical treatments that could be available should injury occur to the participants. Participation must be voluntary, and participants should be allowed to withdraw at any time without risk of penalty. Participants should also be provided a contact if they have any questions or concerns regarding the research.

The Common Rule is only applicable to human participants. In some circumstances, it permits research without participant consent. If the research is conducted using anonymous samples without access to the participant’s private information, by definition, informed consent would not be required. The Common Rule also does not apply if the IRB exempts it as the information used does not involve the identification of the donor. Finally, the IRB can waive or change the requirements of the informed consent if:

  • The research poses no more than minimal risk to participants

  • The welfare and rights of participants are not affected

  • The research cannot be conducted without alteration or waiver of informed consent

  • The participants are provided with relevant information

Biospecimen Ownership

The ownership of biospecimens has been analyzed in many cases. It has been a question of whether the donor retains ownership rights of their tissue. It has also been debated as an issue of “guardianship” versus “ownership”. In most cases involving excised tissue, courts have concluded that donors do not retain ownership of their excised tissue. However, different rulings have been reached in cases where there has been a previous understanding that the patient would retain their ownership rights. With leftover materials, many are considered to be “abandoned” with patients no longer having any property rights. In tissue obtained postmortem, the Common Rule does not apply as it only applies to living individuals. The Uniform Anatomical Gift Act (UAGA) allows individuals to give their bodies for the study of science. Without the individual’s consent, their spouse or family can also make the gift.

Conclusion

The laws regarding human biospecimens are still evolving. There will be much effort and discussion needed to improve the efficiency of informed consent. With increasing studies using human biospecimens, the frequency of lawsuits may be higher. It is therefore important for new legislatures and regulations as it can help to protect or help both participants and researchers. It is crucial for researchers to strive for transparency and avoid using specimens not outlined in the consent form. The awareness of existing rules is also essential to avoid lawsuits and the destruction of valuable human biospecimens.

Reference:

Allen MJ, Powers MLE, Gronowski KS, Gronowski AM. Human tissue ownership and use in research: what laboratorians and researchers should know. Clinical Chemistry. 2010; 56 (11): 1675-1682.


SOP’s of a Biorepository

Introduction to Standard Operating Procedures

Biobanks and biorepositories needs to develop and adopt standard operating procedures (SOPs) that describe the policies and processes of the biorepository in detail.
SOPs should be detailed, well structured, and should undergo a strict approval process. SOP’s need to be reviewed periodically to assess the necessity of updates. Once implemented, SOPs should be routinely followed. Copies of SOPs should always also be stored in designated locations accessible to all personnel at any given time. Biorepository and biobank personnel should review SOPs prior to implementation.

Contents of the SOP

The SOP manual can be very dense and detailed, but should at the very least contain the following points:

Informed Consent

All biorepositories need to keep all records and related documents of the informed consent status for every biospecimen. Additionally, the procedures or protocols followed to obtain informed consent must be specified. Along with this the protection of privacy for all participants and data confidentiality should also be described.

Equipment

This section of the SOP should include the monitoring and calibration of all of the equipment. SOPs regarding the maintenance and repair of equipment is also crucial. All biorepositories should have their own procedures that routinely monitor all the equipment that is involved in the preparation and storage of biospecimens. The accurate calibration of equipment is vital to avoid affecting the quality of biospecimens and their data. The operational settings of the equipment should always be recorded along with all of the repairs that have been performed.

Collection Supplies

All biorepositories should have high standards for their reagents and consumable supplies that are used in the collection, processing, and storage of biospecimens. This means that the supplies should be acquired from certified and approved vendors and should meet the material specifications. Personnel should ensure that these supplies are in good condition prior to their utilization.

Identification and Labeling

All biorepositories will need to have their own guidelines and protocols for the labeling and identification of biospecimens. This should be coupled with the linking of biospecimens to their records regarding donor information and informed consent, so that when required it will be readily available.

Collection and Processing Methods

In this section details are extremely important to allow for the accurate replication of collection and processing procedures. This means that detailed descriptions of the supplies and equipment used are necessary. Along with the methods and processes used in the division of biospecimens into respective aliquots. The collection and processing of biospecimens must include records of staff names, dates, and specific times so potential pre-analytical variables are all recorded.

Storage and Retrieval

All procedures for the storage and retrieval of biospecimens from the biobank should be well described. This should include the guidelines for the addition and withdrawal of biospecimens, response to requests, fulfilling requests, and the disposition of biospecimens.

Transport and Distribution

All biorepositories should have designated policies and protocols for the transport and distribution of biospecimens that ensures their integrity, quality, and safety. This means guidelines should include packaging specifications addressing temperature conditions, temperature monitoring, regulations for the transport of hazardous materials, shipment logs, notifications for delivery, delivery confirmation, and agreements that cover transfers.

Quality Control

All biobanks should have their own testing procedures that document the results which are then kept in the records. This should comprise of tests that assess and control the quality of biospecimens, confirmation of histopathology diagnosis, assessment of nucleic acid integrity, biomarker expression, and more.

Informatics

Policies and guidelines for the management of records and procedures that define data collection methods, access to data, reporting, and quality control of data should be available for all biobanks.

Biosafety

It would be best for all biorepositories to have policies and procedures that address biosafety issues such as the reporting of staff injuries, precautions that the staff should have for bloodborne pathogens, the use of personal protective equipment, handling of hazardous material, and the disposal of biohazardous material and medical waste.

Training

All centers should have their own policies and procedures when it comes to the training of their personnel. These training should be documented, corrective actions that are taken, steps taken to resolve discrepancies for inventory or shipment, manage power outages, monitor samples, and the handling of emergencies and natural disasters.

Security

Procedures for security concerning administration and information systems should be available for all biobanks and biorepositories. These SOPs should address the different points of contact and personnel that are involved in backup. Names and contact numbers for the designated personnel should also be available.

Conclusion

It is important for all biorepositories and/or biobanks to have detail-rich standard operating procedures as it helps personnel get organized and offers guidelines in times of emergency. SOPs can also help to provide detailed information about the processes and preservation methods that ensure biospecimens retain their integrity and are of the highest quality.

References:

Quality management: Technical and operational best practices. National Cancer Institute. Accessed 10/18/2018.https://biospecimens.cancer.gov/bestpractices/to/qac.asp#b-3-3

Types of Biorepositories

Introduction

Screen Shot 2018-08-20 at 10.54.20 AM.png

A biorepository is a center that functions to collect, process, store, and distribute tissue samples or specimens to support future research. These tissue samples can be sourced from humans or animals. The biorepository is responsible for maintaining the quality, accessibility, and distribution of these tissue samples.

 

Operations

  • Upon delivery the tissue samples are recorded all information regarding the sample details are keyed into the laboratory information management system.

  • Biospecimens are then processed to ensure consistency of the samples. Proper tissue preservation methodology is absolutely crucial to a biorepository.

  • These specimens are then stored and held in their appropriate conditions. Sample holding boxes and freezers are sometimes used, however it depends on the storage requirements. For example Formalin-fixed paraffin-embedded tissue blocks can be stored at room temperature.

  • Distribution involves retrieving the required samples from the inventory.

Standard Operating Procedures

Standard operating procedures (SOPs) are important for biorepositories as they help in the following:

  • Reduce problematic variables within the samples,

  • Ensure that biospecimens resemble specimens in their natural state,

  • Provide standards on how operations should be conducted.

Types and Uses of Biorepositories

There are many different types of biorepositories that exist. Some help with biomarker validation, and others are integrated with registries. Most biorepositories are focused on collecting biospecimens for specific diseases. Others function to identify genetic clues that can aid in the guidance of therapeutic development. Similair to disease-focused biorepositories there are those  focused on the understanding of practices and habits. Biorepository sponsors can also vary. While some are funded as part of research to aid in the collection of specimens from participants, some are sponsored by organizations or medical centers to collect, process, and store samples from a wide variety of patients. Some biorepositories are organized by patient advocacy organizations to help kick-start research of specific diseases.

Examples

  1. The Alzheimer’s Disease Neuroimaging Initiative – is a disease-focused biorepository and biomarker validation program that uses the samples and data collected from Alzheimer’s disease patients and patients with other forms of memory impairment.

  2. The Health Outreach Program for the Elderly (HOPE) is a biorepository at Boston University that supports multiple studies. The HOPE registry follows up with their Alzheimer’s patients annually.

  3. The United Kingdom Biobank is a biorepository with a broad focus. They aim to improve the diagnosis, treatment, and prevention of various diseases such as cancer, stroke, diabetes, heart disease, eye disorders, depression, dementia, and arthritis. In between 2006 to 2010, they managed to recruit half a million individuals between the ages of 40 to 69. Samples such as blood, saliva, and urine have been donated for analysis. These participants have also provided detailed personal information and consented to future follow up for many years to help researchers discover how various diseases develop.

  4. The Autism Research Resource is sponsored by the state of New Jersey to research autism in families where more than one child is affected.

  5. The Centers for Disease Control (CDC) Cell and DNA Repository use samples from transformed cell lines available through the Genetic Testing Reference Material Coordination Program. Some of the samples obtained are from diseases such as Cystic Fibrosis, Huntington Disease, Alpha Thalassemia, Fragile X syndrome, and Muenke syndrome.

  6. The National Institute of Neurological Disorders and Stroke (NINDS) Human Genetics DNA and Cell Line Repository focuses on the identification of new genes that causes or contributes to conditions such as Parkinson’s disease, Tourettes syndrome, epilepsy, motor neuron disease, and cerebrovascular disease.

  7. The National Institute of Aging (NIA) Aging Cell Repository utilizes cellular and molecular research to determine the degenerative mechanisms and causes of aging. They have strict diagnostic criteria with cells collected over a span of thirty years. Scientists are using these cultures to study diseases such as Alzheimer’s disease, Parkinson’s disease, Progeria, and Werner Syndrome.

  8. The National Human Genome Research Institute (NHGRI) Sample Repository for Human Genetic Research successfully completed the sequencing of the human genome. They now aim to participate in a variety of studies that focuses on the understanding of the structure and function of the genome and the role it plays in disease and health.

  9. The National Eye Institute Age-Related Eye Disease Study (NEI-AREDS) Genetic Repository was founded to identify how macular degeneration and cataracts develop and progress. This is important as these two conditions are two main causes of vision loss among older patients.

Conclusion

Biorepositories are crucial in supporting different areas of research such as those focused on a specific diseases, broadly focused population studies, identification of genetic mutations, and many more. These studies may have a specific length and purpose and are ongoing studies that follow up with their participants for many years.

 

References:

1)      Biorepository. Wikipedia. Accessed 8/9/2018. https://en.wikipedia.org/wiki/Biorepository

2)      Greenberg B, Christian J, Henry LM, et al. Biorepositories: Addendum to Registries for Evaluating Patient Outcomes: A User’s Guide, Third Edition [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2018 Feb. Types and Uses of Biorepositories and Their Application to Registries. Accessed 8/9/2018. https://www.ncbi.nlm.nih.gov/books/NBK493635/

Ethics in Biobanking

Introduction

ethics.png

Biobanking ethics are important and one of the most debated issues in public health and bioethics. Biorepositories carry the potential to advance disease research in unprecedented ways. There are however concerns about donor privacy and not all biorepositories make sure that they follow ethical standards. People’s DNA and tissue sample has been used without respect for their rights. Regardless of peoples differing views and perspectives, one thing can be agreed upon among most experts, that biobanks are revolutionary. Biobanking ethics include issues such as, but not limited to:

  • Controversies and key challenges faced in biobanking ethics

  • Issues of informed consent

  • Withdrawal from participants

  • Broad consent

  • Ethics of re-contact

  • Confidentiality issues

  • Ownership, property and commercialization problems

 

Issues in Brief

1)      Informed Consent

Informed consent is crucial in ensuring that ethical standards are followed in both research and therapy. It ensures that the participant understands “the nature, duration, and purpose of the experiment; the method and means it is to be conducted; all inconveniences and hazards reasonable is to be expected; and the effects upon the individual’s health may be due to the participation in the experiment." (Excerpt from Springer Article) One of the major issues of informed consent in biobanking is that it only applies to the donor and not those who are connected to the donor. Next, since biospecimens can be used in future studies, participants cannot be “informed” at the time their tissue is obtained as the nature of future researches are not yet known.

 

2)      Broad Consent

There are some experts who believe that broad consent can be a potential solution to the issues of informed consent in biobanking. However, there are some who disagree as it offers minimal protection and minimal guarantees. Broad consent is the permission given by the donor for the biobank, so the biorepository can do what they see fit with the genetic material. While some individuals argue that broad consent is a means of maximizing autonomy, some see it as the opposite where it is an abuse for autonomy. Ethicists worry that broad consent causes donors to relinquish their rights regarding how their genetic material is used in the future.

 

3)      Confidentiality

One of the main features of genetic information is that it can be used to identify the donor and those related to them. While ethicists argue that identification can be discouraged through various methods of anonymization, there is always the possibility that identification is possible. The risk of identification increases as databases grow.

 

4)      Property and Profit

There is also the issue that participants or donors do not own their tissue samples. This is based on the traditional understanding that body parts are res nullius which means that they do not belong to anyone once detached. Ethicists have argued that there are valid reasons for following the “no property” rule for biospecimens. Allowing property would restrain studies and research to the point where it would become untenable. Another issue is that commercial companies may look to make very large profits from donated samples.

 

5)      Feedback to Participants

Another ethical issue is whether or not to tell participants regarding incidental findings from their donated tissue samples. Incidental findings can be defined as “observations of potential clinical significance that have been discovered unexpectedly in a healthy subject unrelated to the purpose and variables of the study.”(Excerpt from Springer Article)

 

6)      Participation, Representation, Maintenance of Trust

Biorepositories are also worried about the mass withdrawal of participants as it will ultimately result in the loss of set-up costs. The maintaining of trust between the public and biobanks are crucial to prevent participant withdrawal and biobank failure. Currently, there is still no one way that is viewed as the best method of practice in this area.

 

7)      Re-contact

Re-contact is becoming an increasingly crucial issue as there is very little industry conformity on how re-contact should be managed. There needs to be a balance between what donors are informed and what's included without overburdening them. Biorepositories and research teams should view the ability to re-contact as a limited resource. Currently, there is no standard that biobanks can look to adopt for this issue.

 

Conclusion

The problems and challenges in biobanking ethics mean that there is a need for alternative models to address the issues. Biobanking presents important and significant ethical challenges. It is important for those involved to be aware of the advancements and developments in the debates surrounding these issues. By raising awareness of these issues, public interest of will increase and as a result biobanking can continue to change the medical research landscape.

 

References:

Widdows H, Cordell S. The ethics of biobanking: key issues and controversies. Health Care Anal. 2011; 19:207-219.